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Abstract 

 
Seymour�s Conjecture states that in any oriented simple graph, at least one vertex 
has �second-outdegree� at least as large as its outdegree. We investigate families 
of oriented graphs to see if they satisfy Seymour�s Conjecture and to see if 
stronger claims can be made about the specific graph families. We verify the 
conjecture for the following families of digraphs:  
(1) Acyclic digraphs 
(2) k-out-regular oriented graphs where k ≤ 4 
(3) Cartesian products G□H in which the factors G and H satisfy the conjecture 
(4) Certain kinds of Cayley graphs 
(5) Out-regular bipartite graphs 
(6) Pinwheel graphs PWCn 
In cases (2) [with k = 1,2], (4), (5) and (6), we prove a stronger claim that every 
vertex satisfies the conjecture. Finally, we show that if Seymour�s Conjecture 
holds true for all strong oriented graphs, then it holds true for all oriented graphs. 
  

1.  Introduction 
 
Seymour�s Conjecture states that in any antisymmetric and loopless directed graph, at least one 
vertex has the property that the second-outdegree of that vertex is greater than or equal to the 
first-outdegree of that vertex. In order to fully explain the conjecture, it is necessary to first 
define some terms. Most of our definitions are taken from West�s Introduction to Graph Theory 
[3], and the reader should consult that reference for any terms not defined here. 
 
 A directed graph (also know as a digraph) is a graph in which every edge connecting the 
vertices has a direction associated with it. If the edge is pointing out of a vertex x, we call it an 
outedge of x. If the edge is pointing out of vertex x and into vertex y, we say that y is an 
outneighbor of x. The first-outdegree of a vertex (also known as simply �the outdegree�) is the 
number of outedges from that vertex. The outdegree of a vertex x is denoted by d+(x). The group 
of all first outneighbors of x is called the first-outneighborhood and is denoted by N+(x). The 
second-outdegree of a vertex x is the number of vertices in the digraph that can be reached in 2 
steps exactly, not including the vertices reachable in one step from x. This is denoted by d++(x). 
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The second-outneighborhood of x is denoted N++(x) and includes all vertices reachable in two 
steps or less from x. We define the neighborhood of vertices reachable in two steps but not one 
from x as the new-second-outneighborhood and we denote in by NN++(x). The indegree of a 
vertex is the number of edges coming into it and is denoted by d-(x). A digraph is called 
antisymmetric, if whenever y is an outneighbor of x, x is not an outneighbor of y. A graph is 
loopless if no vertex is its own outneighbor, i.e. no outedge is an in-edge of the same vertex. 
Another name for an antisymmetric and loopless digraph is an oriented graph. In this paper, 
whenever the term digraph is used, it will be assumed that it is antisymmetric and loopless. 
Thus, with our denotations, Seymour�s Conjecture would read �In any digraph, there is at least 
one vertex, say x, for which d+(x)≤d++(x).� 
 
 The above statement of Seymour�s Conjecture is not the only way that it can be stated. We 
can look at the square of a digraph, denoted D2. If we take a digraph D, then the square of D is a 
new digraph in which we draw a directed edge from a vertex to all the vertices that it can reach 
in 2 or fewer steps in D (see figure 1.1). Using this terminology, Seymour�s Conjecture is �For 
any digraph D, there is at least one vertex x, for which d+(x) in D is less than or equal to 2d+(x) in 
D2.� 

 
 
Figure 1.1 
 
 Seymour�s Conjecture has been proven for a particular family of oriented graphs known as 
tournaments. A tournament is a digraph in which for every two vertices x and y, exactly one of 
the two directed edges xy or yx is present. (Thus a tournament might represent the outcomes of 
who defeated who in a round-robin sports tournament in which there are no ties, and each pair of 
participants compete head to head exactly once.) Seymour�s Conjecture applied to tournaments 
is now known as Dean�s Conjecture and was first proved by David Fisher [1] and later proved in 
a shorter way by Frédéric Havet and Stéphan Thomassé [2]. Havet and Thomassé went on to 
prove the stronger claim that a tournament with no dominated vertex (outdegree of 0) has at least 
two vertices that satisfy Seymour�s Conjecture.  
 

In this paper we study specific families of digraphs and prove that such graphs do satisfy 
Seymour�s Conjecture. We also make stronger claims for some of these digraphs, specifically the 
claim that in some of the digraphs we studied, all of the vertices have a second-outdegree greater 
than or equal to their first-outdegree. We end our paper by showing that if Seymour�s Conjecture 
can be proved for all strong digraphs then it follows that it holds for all reducible digraphs as 
well.  
 
 
 

D D2 
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2.  Acyclic Digraphs 
 
Definition 2.1:  An acyclic digraph is a directed graph containing no walk which starts and ends 
at the same vertex, but otherwise repeats no vertices. 
 
Lemma 2.2:  In any acyclic digraph, there exists a vertex with outdegree 0. 
 
Proof:  Let A be an acyclic digraph.  We are done unless every vertex in A has positive 
outdegree, that is, 0)( >+ Aδ .  Consider a longest path nxxx ,...,, 21  in A, where nx  is the last 
vertex of the path.  Assuming that every vertex has positive outdegree gives us two cases for nx . 
 
Case 1:  Vertex nx  has an outedge to at least one of the other vertices in the path, 121 ,...,, −nxxx , 
but this is a contradiction since A is acyclic. 
 
Case 2:  Vertex nx  has an outedge to a new vertex, 1+nx , but this is a contradiction since the path 
considered was longest.   
 
Thus, nx  must have outdegree 0, as was to be shown.                 
 
Theorem 2.3:  If 0)( =+ xd for some x in a digraph D, in other words, 0)( =+ Dδ , then 
Seymour’s Conjecture holds for D.  In particular, all acyclic digraphs satisfy Seymour’s 
Conjecture. 
 
Proof:  Let D be an acyclic digraph.  By Lemma 2.2, we know that there exists a vertex x in D 
such that 0)( =+ xd , so it suffices to prove the first part of the theorem.  Let x be a vertex of 
outdegree zero.  It is clearly the case that the second-outdegree of x is at least 0 since the 
outdegree of a vertex is never negative.  So, )(0)( xdxd +++ ≤=  which satisfies Seymour�s 
Conjecture.   
 
3.  Cayley Graphs with Additive Generators 
 
3.1 The Infinite Case 
 
Definition 3.1.1:  The infinite Cayley line with additive generators is a directed graph 
determined by a set of generators },...,,{ 21 kggg=Γ , where ∈ig  Z and Γ∉0 .  The vertices of 
the graph correspond to the elements of the integers, and whenever bagi =+ , (a,b∈ Z) an edge 
is drawn from a to b. 
 
Theorem 3.1.2:  All vertices in the infinite Cayley line with additive generators satisfy 
Seymour’s Conjecture. 
 
Proof:  Let the additive generators be },...,,{ 21 kggg=Γ , where ∈ig  Z, kggg <<< ...21 , 
and Γ∉0 .  It is clear that the infinite Cayley line is vertex-transitive, so investigating one vertex 



 

is as good as any other.  Therefore, it suffices to consider the vertex 0 and show that 
)0()0( +++ ≤ dd .  We know that the first-outneighborhood of 0 is the generator set, that is, 

},...,,{)0( 21 kgggN =Γ=+ .  The second-outneighborhood of 0 is generated by adding each 
member of the generator set to each member of the first-outneighborhood of 0.  To obtain new 
second-outneighbors, create a division within the generators in order to separate the negative 
generators from the positive generators, so that },...,,{}...,,{

2121 nm PPPNNN gggggg ∪=Γ , where 
0,...,,

21
<

mNNN ggg  and 0,...,,
21

>
nPPP ggg .  Now, consider the most negative first-outneighbor 

of 0, denoted 
1Ng .  We are guaranteed that 

iNN gg +
1

 (where mi ≤≤1 ) is a new second-
outneighbor of 0 since 

11 NNN ggg
i

<+ , where 
1Ng is the most negative first-outneighbor of 0.  

Likewise, consider the most positive first-outneighbor of 0, denoted 
nPg .  We are guaranteed that 

jn PP gg +  (where nj ≤≤1 ) is a new second-outneighbor of 0 since
njn PPP ggg >+ , where 

nPg  
is the most positive first-outneighbor of 0.  To summarize, we know that we have found at least 
m new negative second-outneighbors and n new positive second-outneighbors.  Since 

Γ=+ nm , )0()0( +++ ≤Γ= dd  which satisfies Seymour�s Conjecture as was to be shown.   
 
3.2 The Modulo n Case 
 
The Cayley graph modulo n case works very similarly to the infinite case.  For a subset Γ of V = 
{0,1,2,�,n-1}, we define the Cayley graph C(Γ, n) as being the digraph with vertex set V, in 
which there is an edge from x to x + e iff e ∈  Γ.  The Cayley graph modulo n is a special digraph 
that is better understood if pictured in a clock or circle form. 
   
Here is an example of a Cayley graph of modulo n with Γ = {1, 2} 
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Lemma 3.2.1: For every vertex x, d+(x) = | Γ |. 
 
Proof:  Let | Γ | = k.  Refer to the definition of the Cayley graph previously mentioned, and note 
that there will be k directed edges coming from each vertex. Therefore, for every x, d+(x) is the 
number of outedges of x, which is k = | Γ |.   
                                                             
Theorem 3.2.2:  If |Γ | > 1, then for D, any RCG and any vertex x in V, and if Γ not in the form 
of {l, 2l, 3l,…, kl} for some l∈  Ζ, then  d++(x) ≥ | Γ | +1. 
 
Proof:  Assume that the elements of Γ are listed in ascending order.  Choose an arbitrary vertex 
x in the digraph.  Based on Lemma 3.2.1, we can assume that this vertex has k directed edges 
that go to k different vertices, and each one of those vertices has k directed outedges themselves.   
Similar to the proof of infinite case, by vertex transitivity, it suffice to consider x = 0. 
 
Case 1:  Suppose Γ consists of {l, 2l, 3l,�, kl}. 
Notice that Γ consists of consecutive multiples of l.  Consider adding each element in Γ to every 
other element in Γ including itself to generate the list of elements in N++ (0).  Similarly in the 
infinite case, elements located in the in N++(0) that repeat elements in Γ will not be considered as 
an element in NN++(0) and must be thrown out.  Elements located in N++(0) yet not in Γ=N+(0), 
will be counted exactly once even if they �repeat�.  Here, N++(0) = {ei + ej | ei, ej ∈Γ } = {2l, 
3l,�, 2kl}.  Thus N++(0) \ N+(0)  = NN++(0) = {(k+ 1) l, �, 2kl }.  So d++(x), = k = | Γ |, which 
shows that Seymour Conjecture holds for this particular case.  
 
Case 2:  Γ consists of any other set of k elements. 
The elements of N++(0) are as follows: 
 
e1 + e1,  e1 + e2,  e1 + e3, �, e1 + ek 
e2 + e1,  e2 + e2,  e2 + e3, �, e2 + ek 
e3 + e1,  e3 + e2,  e3 + e3, �, e3 + ek 

M  
ek + e1,  ek + e2,  ek + e3, �, ek + ek 

 

 
Notice that all the elements located below the diagonal are equal to corresponding elements 
above the diagonal.  Without loss of generality, let�s just assume that the elements below the 

diagonal will be thrown out, thereby regarding 
2

2 kk − .  This leaves 
2

2 kk +  elements remaining 

to be considered in the count for NN++(0).  Note that the elements (y + ek), where y ∈  [e1, ek], 
will consist of k new elements.  Thus, |NN++(0)| ≥ k.   This basically shows that Seymour�s 
Conjecture holds for this particular digraph D simply because d++(0) ≥ d+(0) = k.   
 

For a stronger case, consider adding the smallest element, e1, to each element in [e1, ek-1].  It 
suffice to know that at least one such sum that will not repeat an element in Γ or from ei + ek.  
This is simply because e1 ≤  ej and ei < ek, and therefore e1 + ei ≠ ej + ek, where i, j ∈  [e1, ek-1].   



 6 

 
Case 2.1:  Suppose Γ contains (e1, 2e1, 3e1,�, me1), and me1 = ek.  Also, Γ contains some non-
multiple of e1.  Choose the largest ei element that�s not a multiple of e1, and add it to e1.  You will 
produce a new element that�s not in Γ. This is because regardless of what ei is, the element (e1 + 
ei) will not be a multiple of e1, and thus will not equal me1.   
 
Case 2.2:  Suppose Γ contains (e1, 2e1, 3e1,�, me1) and Me1 for some M > (m + 1).  Also, (m+1) 
∉  Γ.  Adding the element e1 to me1 will give you (m+1)e1, a new element that�s not in Γ.   
 
Case 2.3:  Suppose Γ contains (e1, 2e1, 3e1,�, me1), and ek which is not a multiple of e1.  Since 
me1 is the last multiple in Γ, adding the element e1 to me1 will give you (m+1)e1, a new element 
that�s not in Γ.   
 
We conclude that the d++ (x) ≥ k + 1 ≥  | Γ | + 1 ≥ d+ (x) +1.  Thus, Seymour Conjuncture holds 
for the modulo n family of Cayley graphs with the noted restrictions.   
 
4.  Out-Regular Digraphs 
 
An out-regular digraph is a digraph in which every vertex has the same first-outdegree. In this 
section, we will prove that Seymour�s Conjecture holds for k-out-regulars with k≤4, and we will 
conjecture that it holds for all out-regular digraphs. 
 
Lemma 4.1: In any 1-out-regular digraph, every vertex has a second-outdegree equal to its first-
outdegree. 

 
Proof: Let D be a 1-out-regular digraph. Assume an arbitrary vertex, say x, defeats  y. Because D 
is antisymmetric and loopless, we know that the edge exiting y must defeat a new vertex, say z. 
We know that y is the only first-outneighbor of x and that z is the only first-outneighbor of y. 
Thus, d+(x)=1 and d++(x)=1 for any vertex in D.   
 
Lemma 4.2: In any 2-out-regular digraph, every vertex has second-outdegree greater than or 
equal to its first-outdegree and thus satisfies Seymour’s Conjecture. 
 
Proof: Let D be a finite 2-out-regular digraph. Assume that an arbitrary vertex, say x, defeats 
two vertices y and z. Neither y nor z can defeat x because D is antisymmetric. It is only possible 
for one edge to connect y and z. Without loss of generality, we can assume that z does not defeat 
y (since y and z cannot both defeat each other). Then z must have two outneighbors other than x 
and y thus d++(x)≥2=d+(x). This is true for every vertex in D.   
 
Lemma 4.3: In any 3-out-regular digraph, at least one vertex will satisfy Seymour’s Conjecture. 
 
Proof: Consider an arbitrary vertex, say w, in a 3-out-regular digraph D. Consider N+(w), which 
say consists of vertices x, y, z. Let S be the subgraph induced by these vertices. We show that at 
least one of w, x, y, z satisfies Seymour�s Conjecture. 
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Case 1: At least one of x, y, z has an internal outdegree within S of 0. Without loss of generality, 
let it be x. We know that x cannot have an edge back to w, so since x defeats neither y nor z, then 
x must have 3 new-outneighbors, i.e. 3 new-second-outneighbors of w, and thus w satisfies 
Seymour�s Conjecture.  
 
Case 2: At least one of x, y, z has an internal outdegree of exactly 1 within S, and none have 
internal outdegree of 0 (because then we would be dealing with case 1). On 3 vertices, there can 
be at most 3 edges, thus since none of the vertices have internal outdegree of 0, we can say that 
the internal outdegree of each of x, y, z is exactly 1. 
  

Since the internal outdegree of each of the vertices of S is 1, we know that there are 2 new-
outneighbors of each (that are not in S and not w). If the new-outedges of x, y, z do not all defeat 
the same 2 new vertices, then there are 3 or more ways out of S, making d++(w)≥3=d+(w), and 
hence w will satisfy Seymour�s Conjecture. Thus, let�s assume that all of the edges out of S do 
go to the same two vertices, which we�ll call a and b. Since there are 2 new-outneighbors of each 
of x, y, z, we know that both a and b are defeated by all of S, hence there can be no return edges 
from a or b to S. Also, we know that at most there can be one edge directly connecting a and b. 
Without loss of generality, let�s say that b does not defeat a. Hence, b will have 3 new-
outneighbors (not in S and not a), giving each of x, y, z a second-outdegree of at least 3. Hence, 
each of x, y, z will satisfy Seymour�s Conjecture.  

 
Case 3: At least one of x, y, z has internal outdegree within S of 2. If this is the case then we 
know that at least one other vertex in S has internal outdegree of 0, and this case is thus proved 
by case 1.   

 
Lemma 4.4: Let D be a 4-out-regular digraph. At least one vertex in D satisfies Seymour’s 
Conjecture. 

 
Proof: Consider an arbitrary vertex v in a 4-out-regular digraph and consider N+(v), which say 
consists of vertices w, x, y and z. We show that at least one of v, w, x, y, z satisfies Seymour�s 
Conjecture. 

 
Case 1: If any of w, x, y, or z do not defeat at least one other vertex in D[N+(v)] (the subgraph 
induced by w, x, y and z), then that vertex will have 4 new-outneighbors (not included in 
D[N+(v)]), i.e. 4 new-second-outneighbors of v, and thus v will satisfy Seymour�s Conjecture. 

 
Case 2: Each vertex w, x, y, z defeats at least one other vertex within D[N+(v)]. By argument of 
averaging, we know that at least one of the vertices in D[N+(v)] must have internal outdegree at 
most 1, as follows:  

 
(Averaging argument: The most edges possible between 4 vertices is 4 choose 2, which 
equals 6. The average outdegree in D[N+(v)] is the sum of the edges divided by the 
number of vertices in D[N+(v)]. The sum of the edges is at most 6 and the number of 
vertices is always 4. Hence, the average outdegree in D[N+(v)] is always ≤ 6/4=1.5. We 
know that for the average to be no higher than 1.5, at least one of the vertices must have 
outdegree less than or equal to the average. Thus, since the average outdegree is 1.5 and 
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each vertex has outdegree at least 1, we know that at least one vertex in D[N+(v)], say w, 
must have outdegree of 1 within D[N+(v)].) 

 
We know that w has 3 new-outneighbors a, b and c, outside of D[N+(v)]. If any of the 

vertices in D[N+(v)] has an outneighbor other than w, x, y, z, a, b, or c, then we know that there 
are at least 4 second-outneighbors of v not included in D[N+(v)] and thus that v satisfies 
Seymour�s conjecture. Hence, let�s assume that every edge out of D[N+(v)] goes to either a, b, or 
c, and let S denote the subgraph induced by a, b, and c. We know that at least one of a, b and c is 
defeated by all of the vertices w, x, y and z, because at most, there are 6 internal edges in 
D[N+(v)] and we know that we are dealing with 16 outedges total from the 4 vertices in 
D[N+(v)]. This leaves us with at least 10 edges coming out of D[N+(v)] and all going to a, b, and 
c. Thus, with at least 10 edges going into 3 vertices, at least one of those vertices will have 4 of 
those edges going into it (which would be from the 4 vertices w, x, y and z). By this same 
argument, we also know that each of a, b and c has at least 2 in-edges from D[N+(v)]. Without 
loss of generality, let�s assume that everything in D[N+(v)] defeats vertex a. This tells us that a 
can have no edges returning to D[N+(v)]. There are 3 cases that can occur at vertex a:  
 
Case 2.1: The outdegree of a within S is 0. If this is the case, then we know that a will defeat 4 
new vertices not in S or D[N+(v)] and hence that w, x, y and z all satisfy Seymour�s Conjecture. 
 
Case 2.2: The outdegree of a within S is 1. If this is the case then we know that a will defeat 3 
new vertices not in S or D[N+(v)]. Now let�s look at the vertex w in D[N+(v)] with internal 
outdegree equal to one. We know that the vertex that w defeats within D[N+(v)], let�s say x, will 
also have an internal outdegree of at least one, so without loss of generality x defeats y. We also 
know that x will not defeat w or itself. Hence, w has at least the new-second-outneighbor y within 
D[N+(v)] and 3 new-second-outneighbors outside of both S and D[N+(v)] (the outneighbors of a). 
Hence, d++(w)≥ 4 and w satisfies Seymour�s Conjecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D[N+(v)] 

S 

v 

w x y z 

a b c 

Note: Example does not 
show all out-edges, just 
the ones that are 
mentioned in Case2.2. 
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Case 2.3:  The outdegree of a within S is 2. We already defined a as being defeated by all of w, 
x, y and z. This leaves at least 6 other edges coming out of D[N+(v)] and going into S. We also 
know that within the subgraph S, there can be at most 3 internal edges. In this case, there are two 
things that could happen: 

 
Case 2.3.1: Either b or c has exactly 2 edges coming into it from D[N+(v)] (without loss of 
generality, let�s say b). This means that c must be defeated by all of w, x, y and z. We also 
know that c has internal outdegree in S of either 0 or 1 because two edges are already coming 
out of a. Because c is defeated by all of w, x, y and z, it cannot have any edges going back to 
that neighborhood. Thus, if the internal outdegree of c in D[N+(v)] is 0 then w, x, y and z will 
all satisfy Seymour�s conjecture (proved in case 2.1). If the internal outdegree of c is one, 
then vertex w will satisfy Seymour�s Conjecture (proved in case 2.2). 
 
Case 2.3.2: There are at least 3 edges into each of b and c from D[N+(v)].  Because of this, 
only one edge could possibly return from each of b and c to D[N+(v)]. We know that the 
internal outdegree of either b or c will be 0 (without loss of generality, let�s say b) and thus 
that b will have at least 3 new-outneighbors outside of both D[N+(v)]  and S. Hence, 
considering vertex w in D[N+(v)]  with new-second-outneighbor within D[N+(v)], we know 
that the second-outdegree of w will be at least 4 and that w will satisfy Seymour�s 
Conjecture.   
 

Conjecture 4.5: At least one vertex in all out-regular digraphs will satisfy Seymour’s 
Conjecture.  
 
We believe that similar types of arguments as used for the 3-out-regular and 4-out-regular 
digraphs would work, although as the out-degree gets higher, the argument will predictably have 
more cases. 
 
5.  k-Out-Regular Bipartite Graphs  
 
Definition 5.1:  An oriented bipartite graph is a directed graph whose vertex set can be 
partitioned into two disjoint, independent sets called partite sets. 
 
Theorem 5.2:  All vertices of every k-out-regular oriented bipartite graph satisfy Seymour’s 
Conjecture. 
 
Proof:  Let P be any k-out-regular oriented bipartite graph with partite sets A and B.  Consider 
any vertex x where, without loss of generality, x∈ A.  Vertex x must have k first-outneighbors as 
P is k-out-regular, and each of these first-outneighbors must be in B as P is bipartite.  Consider 
any first-outneighbor y of x, where By ∈ .  Vertex y must also have k first-outneighbors, and 
each is a second-outneighbor of x.  We know that these first-outneighbors of y are new-second-
outneighbors of x since there can be no edge from y to any element of B by the definition of 
bipartite and there can be no edge from y to x since there is already and edge from x to y.  Thus, 

)()( xdkxd +++ ≤=  which satisfies Seymour�s Conjecture as was to be shown.   
 

 



 

6.  PWCn:  A Pinwheel Graph 
 
Definition 6.1:  Kn denotes the complete graph on vertex set [n] = {1,2,�,n}.  A triplet in L(Kn), 
the line graph of Kn, is the subgraph induced by three vertices, ab, ac, and bc where a,b,c are 
chosen from [n]. 
 
Definition 6.2:  PWCn denotes a pinwheel graph which is a directed line graph of the clique on n 
elements where every triplet forms a directed three-cycle. 
 
Theorem 6.3:  All vertices in any PWCn satisfy Seymour’s Conjecture. 
 
Proof:  Consider any arbitrary vertex ab  in a PWCn.  We know that vertex ab is an element of 

2−n  triplets by a property of PWCn, where every triplet contains exactly one outneighbor of 
ab .  So, 2)( −=+ nabd .  Consider any first-outneighbor ac of vertex ab .  We know that the 
third vertex in the triplet containing both ab and ac is bc  which is a first-outneighbor of ac since 
the triplet�s edges are oriented cyclically.  Thus, bc is a second-outneighbor of ab.  Also, it is not 
hard to see that bc  appears only once in all of the triplets containing ab  since triplets share only 
one vertex, and ab  is that vertex.  Therefore, )(2)( abdnabd +++ ≤−= as was to be shown.   
 
7.  Cartesian Products 
 
Definition 7.1: The Cartesian product of digraphs G and H, written G□H, is the graph with 
vertex set V(G)×V(H) specified by putting an edge from (u, v) to (u',v') if and only if (1) u= u' 
and vv' ∈  E(H), or (2) v= v' and uu' ∈  E(G) [3]. 
 

G and H are known as the factor graphs of the Cartesian product. The number of vertices in 
the Cartesian product is the number of vertices in G times the number of vertices in H. (See 
figure 7.2 for an example.) 
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Proof: Let G□H be the Cartesian product of two directed graphs G and H. Assume that G and H 
each have at least one vertex for which the second-outdegree is greater than or equal to the first-
outdegree, say vertex u in G and vertex v in H. (Refer to figure 7.2.) 
 

Consider vertex (u,v) of G□H and denote that vertex x. We know that in G□H, d+(x) = dG
+(u) 

+ dH
+(v). This is because x has as its outneighbors those corresponding to v in column u and the 

outneighbors corresponding to u in row v. No other edges than these come out of x because in a 
Cartesian product the edges are only defined on the rows and columns. As x has at least all the 
new-second-outneighbors corresponding to u in row v and all the new-second-outneighbors 
corresponding to v column u, it follows that in G□H, d++(x) ≥ dG

++(u) + dH
++(v). Hence, because 

we know that dG
+(u) ≤ dG

++(u) and that dH
+(v) ≤ dH

++(v), it follows that dG
+(u) + dH

+(v) ≤ dG
++(u) 

+ dH
++(v). Therefore, d+(x) = dG

+(u) + dH
+(v) ≤ dG

++(u) + dH
++(v) ≤ d++(x), giving us d+(x) ≤ 

d++(x), which tells us that at least vertex x in G□H satisfies Seymour�s conjecture.   
  
8.  Seymour�s Conjecture and Strong Digraphs 
 
Theorem 8.1:  If Seymour Conjecture holds true for strong oriented graphs, then it holds true 
for all oriented graphs. 
 
Proof:  Assume that Seymour Conjecture holds true for all strong oriented digraphs.  A digraph 
is strong when you are able to get from any vertex to all other vertices.  Consider a non-strong or 
reducible digraph D.  By definition of reducible, D can be broken into smaller strong 
components (sc�s), in which there exists a transitive relationship, that is every vertex in the ith 
component of sc will have an outedge directly connected to the jth component of sc, where i > j.  
This is usually represented with a downward arrow (⇓ ).  See figure 8.2. 
  

     sc1 
    
        sc2  ⇓  

M  
       x        sck 
 
Choose an arbitrary vertex x in sck.  The outdegree of x in sck would be the same as the 
outdegree of x in D.  This is simply because sck is a subgraph of D and there is no edges coming 
out of sck.  Since Seymour�s Conjecture is assumed to hold for strong digraphs, then twice the 
outdegree of x in the subgraph sck is less than or equal to the outdegree of x in the square 
subgraph of sck.  That is, d ++

D (x) = d ++
sck (x) ≥ d +

sck (x) = d +
D (x).  Therefore, dD

++ (x) ≥ dD
+ (x), 

meaning there exist at least one vertex in D for which Seymour�s Conjecture holds.    
           
 
9.  Conclusion 
 
We have shown that Seymour�s Conjecture holds true for the different cases described 
previously.  Our strongest aspect is Theorem 8.1, which states that if Seymour�s Conjecture 

Figure 8.2 
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holds true for strong oriented graphs, then it holds true for all oriented graphs.  This is indeed a 
powerful theorem simply because if it is proven that the conjecture works for strong digraphs, 
then the conjecture would be proved, and thus become an important theorem in graph theory.  
 

Although easy to state and understand, Seymour�s Conjecture leaves many open questions.  
There are still many different cases and graphs that we would like to investigate.  Among those 
are near-tournaments, (in which you take a tournament and remove an edge), a stronger claim for 
the k-out regular digraphs as well as the Cayley graph on modulo n, and of course the proof of 
the conjecture holding for all strong digraphs.   
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